Dijkstra, Edsger W.: AllS Codes : 68 - XX

Selected writings on 68805 68B10
computing: a personsal 68-02 68B20
perspective

Key words:

PROGRAMMING THEORY
DIJKSTRA'S PHYLOSOPHY
EFFICIENT ALGORITHMS
GENERAL CORRECTNESS THEORY

Texts and Monogrephs in

Computer Seienece

Hew York - Heidelberg -~

Berlin: Springer-Verlag

XVII, 362 p. DH,79.00; - :

$ 31,60 (1982) N.B.Red.: Gewlinscht von
S.Istrail (2124)

The present velume comprises a collection of 66 papers whose
selection was subject to a personsl perspective. They arerpresented
in the hystorical order of their completion, giving an aeeur&te
pieture ef the preblaag with which the author was confronted, his
solutions, his methods, as well as his phylosophy, sesthetics and
simplieity underlying the "discovering proecedure”.

To enhance the jog and excitement accompanying, as well-
established pattern, the resding of Dijkstra's papers, non-technicsl
pepers are als§ included in volume, To have & better picture of
them, special literary-like consiruets can be epplied to them such
as: essay, parable? fairy-tele, pedsgogical pretext, warning;
pleading, pemphlet, comprehensive explanation, open letter, aphorism,
thesis. However, they require 2 certezin kind of complex "lsbel",
which might be better defined as a "co-operstion” between ususlly
"sequential” creative "processes"., This perfeet mixing of the
ingredisnts into a coherent whole, flourishing on the frontier
between technical computing science and the phylosophy substantiating
its essentially distinguished development, for the enormcus benefit
of both, is what we can call the Dijkstranian Style. And in this

orr e i

-2-

respect, our classification of these pavers as “non;teehnical“
becomes a ¥ery unfair manner of speaking.

The themes of refleetion cover, inter slia, favourite (we think!)
pedagogical topies, ranging from the didactics of programming (i.e.
& the teaching of thinking > !) and the soeciological impaet of it,
to the psychology of stepping into 2 new programming statute (should
we say dignity?) and an analysis of the obstacles such new approaches
are likely to come up esgainst from general intelleetual inertisa,

In this respect, the paper EWD480 : "Crafisman or Scientist?"
is as eloquent as representstive., The eraftsman - like manner of
tesching programming is the way in which < the students sbuld be
taught how to solve the problems of "the real world"” and that there~
forp,_the curriculum should pay as little attention as possible teo
"abstraet subjects”»,. This 1s one extreme of teaching programming,
with & pronounced anti-intellectualistic flavour.

At the other end, we have the pure scientist-like menner. But
« his beéutiful and formal apparatus, indispensable as it may be,
does not aeeessa?ily suffice >>.

As the extremes sre not good, a eertaig "blending" is advisable;
such a blending, however, is not a~4<éns-§1measionel guestion>» . As
opposed to the L disastrous blending viz, that of the technology of
the eraftsman with the pretence of the scientist>) , substantial
evidence is given of what we should try to blend: Q{the technology
of the scientist with the pretemce of the eraftsman>>.

The first alternative is é&sastrags, because << the erafisman
has no conscious formal grip on his subjeet matter, he just "knows"
how to use his tools, If this is‘cembiaed with the seientist's
approach of meking one's knowledge explicit, he will deseribe what
he knows explieitly, i.e. his tools, instead of deseribing how to

use them! D>,

The latter alternative for blending, the asdvisable one, is that
which comprises the tesching of « faets about systems, machines,
programning langusges, etc., - and it is very easy to be explieit
sbout them, but the trouble is that these facts represent about
10 percegt of what has to be tsught: the rémalaing 90 perecent is
problem solviag aﬁé how to avoid unmastered complexity, in short: it
is the teaching of thinking, no more and no less>> .,

As a highly intellectusl sctivity, programming has introduced
remarkable refinements into & how %o discover the unexpected N , and
on its way toward effectiveness brought with its useful lessoms on

< how to avoid unmastered complexity >>and, even more, on < how to
reduce the demands aﬁée on our guantitatively limited power of
rsasoning >> . | |

Somewhat sorresponding to the above two views én the teaching of
programming, are iwo views on erg:aaming and programmers, They are
reporited no less beautifully than instruetively in

EWD512 : 3e§&en$s at a.sygpaéinm '

& There are two views of progremming., In the old view, the
purpose of our p?ﬂgrais is to imstruet our machines; in the new one, |
it is the purpose of our machines to execute our programs, In the P
old view 2 gragraﬂmzr’s»expertisa is proportional to his knowledge
of 2ll the fnanj properties of the equipment against which he has
to fight & continuous battle. In the new view a progresmmer’s
competence is displayed by his good teste and the justification
with which he rejects inelegsnt implementations and clumsy
interfaces > ,

- There are, ineluded in the book, 11 Trip Reports reflecting

the suthor's impressions recorded from 11 International Computing

OSSR

- B
Seience Conferences, As it is abundsntly clear, they are <« more
revealing sbout their author than sbout the people and places

visited >>. |

The opportunity provided hy?the completion of a Trip Report turas ‘
aat to be the perfect glaeevte debate problems like the ethies of
conference partieipation or the severe evalaatian-éf ihe elaims mede
by some participant vs. the true content (if any!) of its paper; in
this latter respect, Dijkstra's keen comments are often arientafed
"~ toward the ridieulization of the laeck of understanding and/or
confusion hiéésa behind the “toehni§al language®™. |

!§0 reports provide without exsgptiaa_"all in one breath"-
readiags; deseribing in his <erystal eclear> manner the facts
revealed as the author’s fine-toothed comb went through the con-
Terence sventis. | v

To eompiete the pieture, a "Non-Trip Report” (EWDS561) is inecluded,
where details about regulsr dayly work eeeuf.

Another series of papers is devoted to "%ﬁthe&atias.lae.“, a
delightful pretext of talking about Hathematies and making Mathe-
maties, in lively busigasé*lika terms., It is hers the place where
the author's kameai «floreet et erescet > , making from this
series a rere intellectual delight.

To record some other themes of the non~technical papers, we
shell give their titles, which are, all by themselvs, as provoeative
{or explanatory) as suggestive:

EWD611 : On the Faet that the Atlantie Ocean Has Two Sides.

EWD618 : On Webster, Wsers, Bugs ané Aristotle.

EWD636 : Why Naire Program Transformation Systems Are Unlikely
to Work.
EWD637 : The Three Golden Rules for Successful Seientific

Resesrch.

-5 w

EWD648

¥Why is Softwesre so0 Expansive? An Explsnation to the
Hardware Designer.
EWD498 : How Do Ve Tell Truths that Hight Hurt?

And related to the last paper, eontaining {Lcomputing's misery
éaptﬁraé in a dozen of essily remembsred maxims >) two such "tfuths"
are réyresentative.

- (< The use of COBOL eripples the mind; its tcachiag sheald,
therefore, be regarded as a eriminal effense‘x>.

CKZAPL is 2 mistake, carried thru&gh to perfection, It is the
» laaséaga of the futuzérfer the programming technigues of the past:
it creates a new generation of ecoding bums >, ’

If the series "Hathematies Ine." would be found delightful by
the mathematician, tw&_athar papers

EWD594 : A Parsble, and

EWDe78 : 3 Story that Starts with a Very Good Computer will suit v

even the finest teste of the c¢omputing scientist,
‘Regarding the technieal paper, ineluded in the volume, they are
selected following the guiding prineiples: (K not published elsewhere
and as varied and as representative as possible D>,

Four technical papers

3%@2? Stepwise Program Construction.

EWD376 : Finding the Maximum Strong Components in avBireeted

Graph.
EWD&82 ; Exercises in HMaking Programs Robust.

»

EWDe22 On Msking Solutions lore and Hore Fine-Grained.

2]

are repreientative of the author's fundamentel view of developing
algorithms of a high degree of naturaslness, hand in hand with its
praof of eoricctneas. And this can be intergreted as the suthor's
nndsrstanélng of "goed" 3 an algorithm is good if it possesses a
reasobable, "not too-hard-to-find" -~ prooef of ecorrectness. To make

the sbove vague "{00" as e¢lear as possible, he provides plenty of

mgn

evidence of the way in whieh the slgorithms must be developed: as
natural as possible, i.e. achileving the lack of "resistesnce™ sas
opposed by its proof of correciness, in the process of deriving it.

Mere spaéifieailg, starting from the problem specificetions
{formulated in a clear and good ﬁaté%i@ﬁ - as opposed to the usual
Zhair-raising>>one!) the <deepest simplieities>> must be
discovered, avoiding the (initial) <<tam§tatiaas that should be
resisted D> ; then, our <<separation of concerns >>will act
. efficiently to point out the basic gosls, towards whiech we shall
direet our programming effort, viewed as a "goel oriented activity”.
And in this process, proving correctness is not #ﬁ a posteriori
task; the correctness formulss are the very "passports™ for
introducing the programming fragments igte'8a¢ae.'

An impressive series of paspers is devoted %o psrasllelism,

congurrence snd communieastien:

EWD338 : Parallelism in Malti-Record Trensactions.
EWD386 : The Solution to a Cyelic Relaxation Problem.
EWD391 : Self-Stabilizstion in Spite of Distributed Control.
"EWDAGS : A Eﬁx,giepaaﬁt Built from Mosquitoes Humming in
Harmony. |
EWD465 : Monotonic Replacement élgeéithas and éhair
Implementation, '
EWD554 : A Personal Summary of Gries-Owieki Theory.
EDW607 : A Correctness Proof for Communicating Processes:
A Small Exercise.
BWD622 : On Making Sclutions HMore snd More Fine-Grained.
EWD623 : The Mathematics Behind the Banker's Algorithm.
EWD629 : On Two Besutiful Solutions Designed By Martin Rem,
EWDE43 : A Class of Simple Communicstion Patterns.

Among the subjects covered by the above papers we mention the

-9 -

the following: logicsl problems involved by the carrying of parsllel
transactions; the study of self-stabilizing systems; 4« systematic
ways for finding the algorithms ensuring some desired form of co-
eperation between a set of loosely ecoupled sequential processesd) ;
4¢ systematic methodology for elephant design>s similarly to the
e:isting one for the design of sequential programs, virtuasl storage
implementetion; the Gries~Owieki nonoperational approsch to
concurrency; the (suceessful) investigation, in isolation, of
imasq&itosa communitating & la Hoare; proving terminetion of intricateé.
elephants endowed with bags of pebble; L< smoothing the correctness ﬁ
grécf \> and giving strong evidence of (K the feasibility of departing
from the usuzl eperétional arguments in whieh one téies to visualize
classes of cemputatibnal histories >) ; methods for deadlock
prevention; a P/V - implementation of conditional eritical regions;
avoiding the danger of deadloek or starvatieﬁf

Zwo papers éesérve specizl sttention:

EWDS62 : A Time-Wise Hierarchy Imposed upon the Use of a Two-

Level Store.

EWD508 : A Synthesis Zmerging?

The first one, ZWD462, though enthusiastically asccepted for
publication, was never published before. The most suggestive
presentetion of the paper is formulsted in the first phrases of she
referee's conclusions, fairly included by the author in the com-
mented eontents of the book;

"The paper formulates and illustrates some fundamental
principles of software engireering which have been shamefully and
disastrously neglected in the past; for this reesson its publicsetion
is to be highly recommended”,.

The second paper, EWD50B, <(Pecords the highlights of a

diseussien‘}>tegether with C.A.R.Hoare, whieh led the latter to

- B =
design his famous "Communicating Sequential Processes”.

Some other subjects are covered by some other papers, e.g.
shunting monitors, error recovery vs. basicslly unrelisble storage
techniques, small vs. L sizable >>progrems, progrsm inversion, weak
and strong termination of programs, eontinuity snd bounded nons
determinaey.

Last but neither least nor accidentel we have to say some words
about EWD53%8 : 4 Collection of Besutiful Proofs. In an effort to
isolate what "elegance in proof" means, the author presents this
raport as a draft chapter t0o a possible book thtled "On the Nature -
and Bole of HMathematical Eleganee”.'fhe problems included in the
Collection, are chosen so that they'céalﬁ be appreciate by the
4 gemerally educated >> and that <<all mathematicisns will agree that
they are beautifuld>> . They support'strcng evidence that msthematical
elegance is not an elusive conecept at all.

"The fighting sgainst software inelegsnce”™ is now a movement,
whose ex;eneﬁt is E.W.Dijkstra. And in this respect, his words are
representative: v

& We have to fight chaes, and the most effective way of doing
that is to prevent its emergence. We have to leara to avoid all
forms of combinstorial complexity generators that, nhen active,
rapidly tex our ebility to carry out a caseanalysis far beyond the
limits of our power of reasonong. To recognize the emergence of a
combinstorial complexity generator long before it has poisoned your
design beyond salvation requires constant vigilanece, a vigilance
that can and should be taught.

To circumvent such emerging complexity generators may very
well be a tough problem, the solution of which I can only describe
es mathematical invention>> .

Regarding programming environment, rejecting inelegent

-9..

solutions is not an aesthetic demand only, but the very base of
reliable design. And in this context, "elegance finding" is not
everybody's business.

Can this be put into a more persuasive shape than the following:

& Don't blame me for tﬁe fact thet competent programming, as I
view it as an intellectusl possibility will be too difficult for
"the average programmer"” - you must not fall intc the trap of
rejecting a surgical technique becsuse it is beyond the capabilities
of the barber in his shop arround the corner S .

The author's strong demand for elegsance is based on his essentialfL

formation as (pragmatic industrial mathematieian >>, and all his

papers are a collection of beautiful proofs that "Zlegsnce emergence”

is the very business of the true Computing Scientist.

His writings, profound and beauvtiful, with sirong influence on our
patterns of thinking, seem to unveil those facets of the design
progess whiek are equally natural, efficient and elegant, i.e.
{queting G.Pélya) its magie.

In every fibre of our bodies we agree that plasced in that way,
our effort will be in the right perspective.

It 1s our fortune that his diseourse about "magie®, i.e.

Pijkstra’s "meta-magic™, is magiec itself,

S.Istrail

